
The upper triangular solutions to the three-state constant quantum Yang-Baxter equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 7077

(http://iopscience.iop.org/0305-4470/26/23/044)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 20:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/23
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 26 (1993) 7077-7095. Prinfed in the UK 
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quantum Yang-Baxter equation 
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Department of Physics, University of M, 20500 Turku, Finland 

Received 2 June 1993 

Abstract In this article we present all non-singular u p p  hiangular solutions to the constant 
quantum Yang-Baxter equation Rj;; R:; R z &  = R,$; R;;; R;:& in $e fhreastate case. 
The upper triangular ansatz implies 729 equations for 41 variables. Fomnately, many of the 
equations m e d  out to be simple, allowing us to start breaking the problem into smaller ones. 
In the end we had a total of 552 solutions, but many of them were either inherited from two-state 
solutions or subcases of others. The final list contains 35 non-trivial solutions, most bf them 
new. 

1. Introduction 

In this paper we continue our work on systematically solving the constant quantum Yang- 
Baxter equation (YBE) 

(1) 
In our previous paper [ l ]  (for more details, see [2]), we solved the two-state problem 
completely, which involved 64 equations in 16 variables. 

hgeneral, (1) contains N 6  equations for N4 unknowns, so in the present case of N = 3 
we have 729 equations for 81 variables. At the moment this is too complicated for an 
exhaustive study and one must proceed step by step with suitable~ansatz. The present 
ansatz is based on the two-state results: it tumed out [I, 3,4] that all two-state non-singular 
solutions were either 

* Upper triangular: R$ = 0, if j > 1 or j = ' I ,  i z k, or 
Even weight: R$ = 0, if k + I  # i + j 

(Ih-thinking of R$ as an N2 x NZ matrix, we use the convention that the right-hand indices 
define the block.) Thus upper triangularity tumed out to be a good ansatz for finding 
two-state solutions, and we hope it is equally productive when the number of states is three. 

Of course, several three-state solution have been obtained over the years. For example 
in [SI the spectral parameter dependent solutions associated with Kac-Moody algebras were 
obtained. In special limits these solutions may reduce to upper triangular form. 

2. Simple solutions 

Let us first of all note that the YBE does have some 'easy' classes of solutions. That is, the 
solutions are easy to construct from previous solutions or for some other reason. (This does 

0305-4470/93/u7077+19$07.50 @ 1993 IOP Publishing Ltd IQ11 

R ~ L F Z R ~ ~  RM - ~ f + ~ k r h ~ I ~ h  
1112 k,h kzka - 1213 ilk3 ktk2' 

(mod 2). 
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not mean that the other related structures (e.g. algebras) are necessarily less interesting.) 
In this section we will describe two such classes: the solutions belonging to them are not 
mentioned again when we discuss the results of our search. 

2.1. Solutions inheritedfrom lower number of states 

A solution to (1) with a lower number of states can always be dressed to become a higher- 
state solution. There are at least two ways to do this. 

2.1.1. Diagonal dressing Let k be an M-state solution of (1) and N > M. Let p be a 
selection of M numbers from (1, . . . , N}, and define the N-state R-matrix as 

When this is substituted into (1) we find further conditions on s as follows: 

R;; (sm;smj - s,ts,;) = 0 

R; (SjmSml - S t m S m j )  = 0 (3) 

V i ,  j ,  k, 1 E p, m # p, no sum. (It is interesting to note that the conditions are exactly like 
those obtained in a different context in 161.) A trivial solution to (3) is given by s;j = 1, 
but there can also be others (depending on the form of k). 

In the present case we have M = 2 and N = 3 and there is only one index outside p. 
Asanexampleletustakep={1,3}and 

-kl 
R;j (SimSjm - s~nrs~m) = 0 

(for matrices we always write ‘.’ in place of a ‘O’, for better readability) and then the only 
remaining condition from (3) is slzsz, = s ~ s s 2 .  Thus we can extend (4) to a three-sate 
solution with the four additional parameters a, b ,  x ,  y :  

R =  

1 . .  

. . P  

. a .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. .  . .  

. . .  . ay . 

. . .  

(5) 
I .- 

2.1.2. Block dressing The starting point is as above but the new higher-sate solution is 
constructed as follows: 

I?!! when i, j ,  k, 1 E p. 

&,! when j ,  I E p, i ,  k @ p 
GfS: w h e n i , k E p ,  j , l # p  
@8j otherwise. 
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This ansatz leads to the conditions 

( F  & F )  k = k(F @ F )  

k(G @ G )  = (G @ G ) k  
[F, GI = 0. 

(1 @ F)&G @ 1) = (G @3 1)k(1@3 F) (7) 

The most important class of  solutions to (7) are those with G CL F- ' ,  in which case the 
first equation of (7) is sufficient. An example of such a solution is 

R := 

. -cs 
. -1 I 

which decomposes as 

2.2. Solutions generated by commuting matrices 

The following solutions can be said to be inherited from lower dimension, when dimension 
means the number of pairs of indices. (This hierarchial structure is more obvious when one 
considers extensions, see e.g. 171.) 

The result is simply the following: Let (N(n),  M(n)ln E I }  be a set of commuting 
N x N matrices, then i t~is  easy to show that 

is an N-sate solution of (1). 
A commuting set of matrices cambe simultaneously brought to the Jordan canonical 

form, but the Jordan form does not have to be diagonal. A two-state example is provided 
by ~ . 

R =  (-*). 
It can be decomposed (this is not unique) as 
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When the number of states is three t h m  is still more freedom and there are more vaned 
solutions of this type, but we will not include such solutions in the list of results. An 
example is 1; i 1 :; {la] 

. . .  1 .  . &as d8as 
R : =  . . . . . &as . 

. . . .  . 

. . . .  . 

. . . .  . 

. . . .  . 

3. Symmetries 

It is well know that the set of equations (1) is invariant under the continuous transformation 

(13) 
where Q is any non-singular N x N matrix and K a non-zero number. They are also 
invariant under the index reflections 

R + K ( Q  @ Q)WQ @ e)-' 

RC + R i  (14) 

R!,! --f Rg (15) 
the first of these is the usual matrix transposition and the second follows from R --f P R P ,  
where P$ = SiSj is the permutation operator. 

For special choices of Q one caii obtain other discrete transformations. In general, if 
U is a permutation of the set {I,  . . . , N I ,  then Q j  = Sau, yields a relabeling of indices 
R: -+ R$$$. An important special case of this is given by Qi = which, when 
followed by transposition, yields reflection across the secondary diagonal. 

In this paper we restrict the R-matrix to be an upper triangular ma th ,  after which it 
is natural to use only upper triangular transformation matrices Q, which we will call U 
from now on. Under such tranformations the upper triangular nature of R is preserved. 
Furthermore, one easily finds that the diagonal blocks transform as 

R:: -+ U ~ R $ ~ U - ' ~ ,  (no sum over m). (16) 
Thus, in order to fix the remaining rotational freedom we will just need to impose conditions 
(of a 'canonical form') on the diagonal blocks. 

Normally one would require the canonical form of an upper triangular matrix be the 
Jordan canonical form but this may require transformation matrices that are not upper 
triangular. For this reason we must relax the definition of what is a canonical form. It 
turns out that using just upper triangular transformation matrices one can bring any upper 
triangular matrices into one of the following five 'semi-canonical' forms 

G = ( Q  b 1) + ( a  ; I) . .=(a f ;) 



Three-state constant quantum Yang-Baxter equation 708 I 

This is the basis of our classification scheme. 

4. How the equations were solved 

4.1. Breakdown into smaller sets 

As usual, we must use the available symmetries to divide the problem into several smaller 
ones. In particular, we want to fix the continuous symmetries related to upper triangular 
transformation matrices. The detailed breakdown is given in the appendix, here we give 
just the general idea. 

We start with the top diagonal block and transform it into the semi-canonical Jordan 
form (17). We may therefore assume that the upper block is of the type Ci in (17). We 
work through the cases~in opposite order, C, first. Using a reflection across the antidiagonal 
when necessary we may assume that the lowest diagonal block cannot be reflected up and 
transformed into anything that has already been analysed. Using the notation that - C, is 
anything that can be transformed to C. using upper triangular matrices, we can Write the 
first division by giving the upper and lower blocks: 
(i) up Cs, down anything 
(ii) up C4, down anything but - C,, 
(iii) up C,, down - C3, or - C4, or - C1, 
(iv) up Cz, down - C4, or - C1, 

In the third and fourth cases note that an antidiagonal reflection takes C, into Cz. 
This the starting point. Further complications arise when c = a in C3 or a = b = c in 

CI, because then they commute with an upper triangular transformation matrix having units 
on the diagonal. In those cases one can use the remaining freedom to operate on the other 
diagonal blocks. In the appendix we have given a more detailed breakdown. 

4.2. Solving the equations 

For each subcase we still have to solve the 729 equations. Some of these equations vanish 
automatically because of the upper triangular ansatz. It tums out that there are also many 
simple equations that factor to linear factors. Since the present equation solver routines 
cannot handle well very large sets of equations, we decided to start the solution process by 
interactively splitting the process into branches and subbranches based on simple factorizable 
equations. (All algebraic work was done using REDUCE [SI.) The algorithm was as follows: 
(i) Initialize, in particular record the expression that cannot vanish (Ex: A # 0). 
(ii) Are there simple factorizable equations? 

(v) UP Ci, down C I .  

Yes: Choose a simple equation (Ex. B ( A  - 1)(C - D)=O) and find its solutions. Go to 

No: Go to (iv) 

Yes: Add the first solution as an additional rule to the current branch aTd create a 
new branch (which inherits the current assigments and non-vanishing condition) for 
each additonal allowed branch, if any. With each later branch add the condition 
that the assignment of the previous branch cannot hold. Go to (ii). (Example: 

, 

(iii). 

(iii) Are there any solutions that do not break the non-vanishing condition? 

=> 01, A I ,  11.4 => 11, A B ] ,  { (C =Z DI, A N A  - 1)))) 
No: Go to (v) 
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(iv) Are there equations you want to solve by hand? 

assumption does not hold. Go to (iii). 

solutions. Go to (v). 

Yes: Do it, but if you have to assume something, create also a branch where the 

No: Solve the remaining equations using 'groesolve' [9] and output the allowed 

(v) Is this the last branch? 
Yes: End. 
No: Take the next branch. Go to (ii), 

A log of the interactive solution process was saved using the unix 'tee' utility, and 
checked later. Altogether the printout extended well over 1000 pages. In the end we had 
552 solutions, but naturally most of them Nmed out to be of the simple type of section 2, 
or subcases of other solutions. 

5. The non-trivial solutions 

As expected, the problem of classifying the solutions is almost as time-consuming as finding 
them. We must characterize the solutions by something that i s  invariant under the possible 
transformations. The method we finally chose was to classify first by the number of different 
eigenvalues of the R-matrix. Jn counting the different eigenvalues one must be careful, 
because some solutions only seem to have the required number of eigenvalues. (An example 
is provided by diag(1, $1, $;, e;, cz, $,f$, c,, ($e;, $2). $? = 1, which seems to have six 
different eigenvalues. Since there are only three different cubic roots of unity there are 
actually at most three different eigenvalues, arranged in several ways.) 

is a cubic root of unity in general, q is acubic root # 1, (i.e. e3 = 1, r12 = -1  -q),  E = +1, 
other Greek symbols are also roots of some polynomial equation given in the text Symbols 
with different subscripts have independent values. Small latin letters x ,  y ,  z, p. q,  k, . . . are 
free parameters. Capital letters have special properties, given in the text 

We would like to repeat again that the simple solutions of section 2 are not included. 
Also, solutions related by the transformations discussed are not mentioned separately, neither 
are those obtained from previous solutions by restricting parameters. 

First a word about notation. The zeroes are represented by dots, for better readability, 

5.1, Nine different eigenvalues 

First we have a solution with the full number of nine different diagonal elements: 

Here x is a free parameter that can be scaled to 1, since it must be non-zero. The q = qp2 
subcase of this solution was presented in [IO]. 
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5.2. Eight different eigenvalues 

7083 

The first solution is the multiparameter version of the standard GL(3) solution, as 
generalized in 1111 and [12] to the following that has maximum of four free parameters, 
P, c ,  4 .  k: 

1 . .  
. P .  
. . L  
. . .  
. . .  
. . .  
. . .  
. . .  
. . .  

where A ,  B E 11, -q}. 

matrix elements elsewhere. The first such solution is 
If one imposes further relations among the diagonal entries there can be other non-zero 

where /I is a root of (p3 - 1)(p2 + 1) = 0. In fact Rs.2 has eight different eigenvalues 
when p2 = -1 and I when p3 = 1, but we keep these two branches together. If x = 0 we 
get a subcase of R8.l .  Other solutions of this type will appear later. 

The following is a rather asymmetric solution: 
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5.3. Seven different eigenvalues 

The following solution is related to R9.l: if in the diagonal of R9.l the parameter p is 
restricted to be a cubic root of unity we can have more non-zero matrix elements: 

1 . .  
. €1 . 
. . p .  
. . .  

x .  
I - q  . 

461 , 

R7.2 = : : : I  j%21 :, I f q  A j  
. . .  . P - q  . 
. . .  . p-Iqc2 . 
. . .  

where A E { I ,  -4). 

5.4. Six different eigenvalues 

The following solution is related to Rg.1 and R7.1 

The p = -q subcase was found in [13]. 
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The next solution is related to Rs.2: if we have /I = 1 in R8.2 there is other freedom 

. . p  

available: 

. 

R6.2 = 

1 ! pf ; : 
. .  
. .  
. .  . . . p-2e 
. .  . . .  
. .  . . .  
. .  . . .  

' Y '  
. . .  

. . .  

. . .  

. . .  
P . '  

. . E  

. p2E . 

Here x and y can be scaled to 1, if they are non-zero. 

5.5. Five different eigenvalues 

There were no new non-trivial solutions with five different eigenvalues. 

5.6. Four different eigenvalues 

First we have another relative of R8.l 

R4.1 = 

X 

: :  -:: -ip2ye 
1 - ~ i  . 

z 

1 - 6 i  . .. 

ip'c 
ipe 

-is 

where $4 = 1. 
Up to now the diagonal blocks have been of type CI. The next two represent a pattern 

that we wi!l meet several times later on; the diagonal and (1.3) blocks are of type C, (more 
or less) and in addition. there are some non-zero entries on the fourth off-diagonal. 

R4.2 = 

1 . x  
. P .  
. . l  
. . .  
. . .  
. . .  
. . .  
t . .  

. . .  

. . .  

. . 9  

. . .  
P-' . Y 

. . p-' 

. E .  

. . .  

. . .  
. .  

C a 
. P ( x + . c - P Y - q )  . 

c 

1 x 
~P 

1 
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R4.3 = 

1 . x . .  
. p . 
. . I . .  
. .  . 
. . .  
. . .  
. . .  
. . .  
. . .  

R4.4 = 

-x . -xY \ 
. . x - y  . -2p2 . 

p-’  . 2 . y - x  . 

1 Y 
. P  

. . 1 

-Y 

. E  . 

. . p - 1  

. . 

. . 

1 . .  
. Cl . 
. . g .  
. .  . 
. . .  
. . .  
. . .  
. .  . 
. .  . 

I 1  . . 
. El . 
. . 1  
. . .  
. . .  
. . .  
. . .  
. . .  

\ .  . . 

. x  -x&; . 
1 - t 2  . . -Y61 

. . 1 - 6 2  . 
6 3 2  . Y 

. %I%; . 1 - % 2  . 
. 1 .  

. h % 2  

6%; 
1 

; ;,I; i ; ;  
. .  . . 

. .  . . .  

. . .  . .  

. . . . E I P  . 

. . . . .  

5.7. Three different eigenvalues 

The next solution reduces to R8.2 if y = 0, cf also R7.1 
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. .  
E . Y E  
. -1 . 

R3.3 = 

4 Y  + x )  

x2p-I 
X 

The following reduces to Rs.3 if y = 0: 

. .  

. .  

R3.4 = 

1 Y + x  
E 

( 1  . . 
. 61 . 
. . g 
. .  . 
. .  . 

~. . . 
. .  . 
. . .  

\ .  . . 

5.8. Two different eigenvalues 

Now most of the solution have the previously mentioned structure: the diagonal and (1,3) 
blocks are like C3; in addition, there are some non-zero entries on the fourth off-diagonal. 
We list these solutions in decreasing number of non-zero elements on the fourth diagonal: 

4 
. E l . .  . k . U E I  +kEi+(Ez -  1) . 

Rz.1 = 

R2.2 = 

. .  

x 
El I '  1 

1 . y - x  
. E  . 
. .  1 
. .  
. .  
. .  
. .  
. .  
. .  

I p . I -y.+x . ? ( - 2 y * + X 2 )  
. --x - Y E  

. I  . 1 
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R2.3 = 

R2.4 = 

[; a -ytxl' -? YYY 

. . .  YS . y - x  . 
. . . . . .  -1 I I I ; :  . . . . .  

. . . . .  

1 i; :I;, I. ;,I; -: ; 
XE1. 

. . .  

. . . . .  

. . . . . .  

. . . . . .  

. . . . . .  

For the following two the diagonal blocks are of type C2. If the parameter b were zero 
one could make an index shuffle so that they would fit into the previously mentioned band 
form. 

R2.6 = 

1 :  !,if 1; - ; E l i !  
. .  
. . . .  . .  
. . . .  E ,  . . 
. . . .  . €1 X E ,  . 
. . . .  . E ,  . 
. . . .  . . 62 



R2.7 = 

f I x . -x x ( x - 2 c )  . 
. 1 . . x-2c 
. . E ,  . -cEI 
. . .  1 -x+2c . 

. . . . .  1 
. . . .  E ,  

. . . .  . 

. . . .  

. . . .  
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. . -bX'  

. .  -b 

. .  b 

. . 

. .  

. . 
E l  CEI . 
. E ,  . 
. . E2 

. . E , .  

The following are rather sparse but have more freedom on the diagonal 

. . . . .  

R2.a = 
. . .  E l .  . . . .  

. . . . .  . .  I € 2 .  

. .  . .  . .  

/ I  . x . .  
. 1 . . .  - y + x  
. . I . .  
. . .  1 .  X 

. . . . .  1 
R I , ,  = . . . .  I 

. . . . .  

. . . . .  

. . . . .  

5.9. One eigenvalue 

The next four solutions have basically the C3 structure, with some extra elements. 

-x  . -XY 

. - x ,  q 
-Y 

. y - x  -q 

Y 

1 

1 
1 
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. .  

1 . x . .  . 
. I . . .  . 
. . I . .  . 
. . . 1 . 2 y - x  
. . . .  1 .  
. . . . .  1 
. . . . .  
. . . . .  
. . . . .  

R1.3 = 

- X  - X Y  

. - Z y + x  p 
-Y 

. 

1 Y 

1 
1 

R1.4 = 

' 1  x . 
. 1 . .  
. . I .  
. . .  
. . . .  
. I . .  

. . .  

. . .  

. . .  

-x -x2 - k + x q  p k a 
-X . q b  

-X . P  
1 x . p - q  -b 

1 
1 

. 1 x  

. . 1  

. 1 

The next one is like C2. The labeling change 2 * 3 would make it almost C3 but 
would not keep the solution upper triangular. 

The next three solutions have mixed diagonal blocks. It could be possible to transform 
the upper block to Cz or C3 but we chose a different and apparently simpler form defined 
by the requirement that the above-mentioned relabeling 2 cf 3 keeps the matrix upper 
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' 1 x p 
. I . .  
. . I .  
. . .  
. . . .  
. . .  
. . .  
. . .  
. . .  

triangular. 

- X  -XY -2px - k  - p  k -pq \ 
-Y . - p  . 

-q - X  

P 1 y 

. 1 

. 1 x 9  

. . 1 .~ 

. . 1  

1 R1.6 = 

. 1 . .  

. . 1 .  

. . .  

. . . .  R1.7 = 

-Y -9+p . a 
-x . a 

1 y 9 
1 

R i s  = 

. . .  .~ 1 

1 x P I-x -xy  c l a  - c + x ( - q f a )  b 

1 1 . -1 -1 x 
. 1 1 . -1 -1 
. . 1 .  . -1 
. . .  1 1  . 
. . . .  1 
. . .  . . l .  
. . .  . 
. . .  . 
. . .  . 

y y - x  p 
. y - z + y  
. Y 

-1 -1 z 
I .  -1  -1  

-1 
. 1  1 

1 1 
1 

1 : : : I :  : : ~ 1 :  1 

. . .  -9 -P 

. . .  

x .  
. l .  

. . . 1  

Finally we have two solutions whose diagonal blocks are of type C,: 

709 1 

~ 

R1.9 = 

In the next one the parametrization is rather complicated and it would be interesting to 
understand its origin. (Note that x = 1 yields a symmetric solution.) 
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R1.W 

1 2 . 
. 1 2  
. . I .  
. . . 
. . . .  
. . .  
. . .  
. . .  
. . .  

-2 -4x 8x 4 -4x(7 + x )  
. -2x 4 - 6 x - k ’  . 2 ~ ( 1 + ~ )  6 ~ ( 2 + ~ ) ( - 1 + ~ )  

1 2r - 2 ~ ( l - ~ x )  -2 -2x(l+n)  - Z n ( l + 3 ~ ) ( - 2 + ~ )  
2 - 4x - 4 ~ ( 1  -2) 

1 2x -2x 4x( 1 - 2x) 
. 1 2 -4x  
. 1 - - 2 + 4 ~  4(1 -&)(I - X) 

. 1 -2 + 4~ 

. 1 

6. Discussion 

In this paper we have given all upper triangular non-singular solutions to the constant 
quantum Yang-Baxter equation (1). modulo upper triangular transformations (13) and 
reflections (14), (15) and minus simple solutions of section 2. 

There is not much that we can say now about the solutions: here are only some random 
observations. (i)Someofthesolutions(Rg.l, R ~ , I - R ~ . ~ , R ~ . ~ , R ~ . ~ , R ~ . ~ ,  R4.1 and R3,1-&.4) 
satisfy also the weight condition R t  = 0, if k + I # i + j (mod 3). Several others satisfy 
the same condition (mod 2). e.g. R2.l - R2.5. (ii) The upper triangular property is of 
course sensitive to index relabeling, for example 2 U 3 often breaks it. Sometimes one can 
find an upper triangular transformation after which the solutions stays upper triangular even 
after 2 -++ 3 exchange. This happens for the solutions Rs.3, R4.2, R4.4, R3.4, R2.4, R2.5, Rz.9, 
Rl.4,  R1.6, and RI.R, and they are presented in this special form. (iii) Some solutions 
show interesting parametric relations, in particular Rg.1, &.I, R6.l and Rl.10. 

Now that we have these constant solutions several natural questions come up for further 
study, for example, can one add a spectral parameter, can one contruct a corresponding 
universal R-matrix? The corresponding algebraic structures also need investigation. 

Appendix A. 

In this appendix we give the breakdown of the original problem to smaller subsets. The 
primary classification proceeds by the upper triangular blocks on the diagonal. The ‘number 
of solutions’ given below is the number before any trivial solutions or subcases were 
eliminated. 

A. Upper block of type CS 
We use scaling freedom to put all non-zero entires in Cz to 1. The solution procedure 
produced 8 solutions, which were immediately reduced to 3 basic solutions. 

B. Upper block of type C 4  
Let us scale so that h = c = 1 in C4.  In principle we could exclude lower blocks of type 
CS from the very beginning, but no such solutions were found anyway. 

(i) a arbitrary, c5 # 0 or f7 # 0 3 solutions, all have a = 1. 
(ii) a # I, cs = f7 = 0 22 solutions 
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(iii) a = 1, cs = f7 = 0 1) h # 0, 4 solutions. 2) Lq = 0, as = 1 , 9  solutions. 3) b7 = 0, 
(18 = 0 35 solutions. 

C. Upper block of type C, 
We can scale a = b = 1. 

C.1. c 5 # O o r f 7 # 0  
no solutions. 

c.2. cs = f, = 0, c # 1 
33 solutions. 

c.3. c5 = f7 = 0, c = I 

Now C3 commutes with any upper triangular matrix with units on the diagonal. Using 
this we can put the lower block also into ~a semicanonical form. Solving some of the 
equations reveals that all the diagonal entries of the lower block also equal 1. If the lower 
block is of type C5 a reflection takes the system to the one studied before; the same holds 
if the lower block is of type CZ. If the lower block is of type C,, we get a single solution. 

What remains is a lower block of type C3 with a = c, but possibly with b = 0. This 
again commutes with the UT transformation matrix withunits on the diagonal;~we will thus 
use this rotational freedom to put the centre block in a semicanonical form. 
(i) Centre block of type 5: no solutions. 
(ii) Centre block of type 2: 3 solutions. 
(iii) Centre block of type 3: 42 solutions. 

D. Upper block of type 172 

Now the lower block must be of type Cq or C,, all others can be reflected to the cases 
studied before. 
(i) f7 # 0: No solutions. 
(ii) cg # 0 or f7 = 0 2 solutions. 
(iii) c3 # 1, cs = f7 = 0 11 solutions 
(iv) c3 = I ,  cs = f7 = 0 In this case one quickly finds that the lower block must be 

Here we need to analyse only the case h = g = 0 because ( I )  If k = I ,  h # 0 we can 
use upper triangular transformations to put g = 0. Then the lower block is of type CZ, 
which reflects to an upper block of type C, done earlier. (2) If k = I ,  h = 0, 8 # 0 
lower block is of type C3, done earlier. (3) If k # 1. h # 0 we can transform lower 
block to type Cz without changing the upper block. (4) In the remaining cases the lower 
block is diagonal, there were 15 solutions of this type. 

E. Upper block is non-unit diagonal, cg # 0, f7 # 0 
Let us normalize the diagonal elements as (I; b, c). Here we may also assume that the 
lower block is diagonalizable by an upper triangular matrix, but maybe not yet in diagonal 
form. In most cases solving the first few equations yields directly a diagonal lower block, 
exceptions to this are discussed separately. 
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In general one finds that if cs # 0 or f7 # 0 then c3 = b;, this implies in particular that 
in this section we must have bz # 1. After that one also finds quickly that the lower block 
must be 

( 1  k :) 
(i) b3 # 1, bZ # 1: 3 solutions. 
(E) b = -1: As mentioned above we must now have c3 = 1. If now I = h in (Al) the 

system can be reflected to one of the cases studied before. If 1 # h one can use the 
transformation 

( t  i I) 
which commutes with diag(1, -1, 1). to put g = 0. One finds 4 solutions. 

(iii) b3 = 1, b # 1: 5 solutions. 

F. Upper block is non-unit diagonal, c5 # 0, f7 = 0 
The same comments as above holds in this case and we just give the results. 

(i) b3 # 1, b2 # 1: 4 solutions. 
(ii) b = -1: 4 solutions. 
(iii) b3 = 1, b # 1: 6 solutions. 

G. Upper block is non-unit diagonal, c5 = 0, f, # 0 
As before, the lower block must be as in (Al). If I = h we can reflect the system to case 
F or C, else we eliminate g and reflect to case F. 

€I. Upper block is non-unit diagonal, c5 = 0, f, = 0 

H.I .  The diagonal elements (1, b ,  c)  are all different 
16 solutions 

H.2. c =  1, b # 1 
Again one finds that the lower block must be of type (AI) and as in E(ii) one can show 
that the lower block must in fact be diagonal. If its diagonal elements are. all different we 
reflect it to H. 1. Thus we get subcases according to the diagonal entries of the lower block 

(i) Lower block = diag(1, k .  I ) :  21 solutions 
(ii) Lower block = diag(k, k ,  1) or diug(k, I ,  I ) :  37 solutions. 
(iii) Lower block = din&, I ,  I ) :  19 solutions. 

H . 3 . b = l , c # 1  
Now we may assume that the lower block is transformable to a diagonal form, which has 
at most two different elements and is not (h ,  I ,  h). All other cases can be reflected to ones 
studied before. Then one finds that the lower block must be 
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Since the upper block stays invariant under transformations 

we can transform the case h # k to a diagonal form while the case h = I reflects to C4. 

(i) Lower block is diag(h, h,  I ) :  36 solutions. 
(ii) Lower block is diag(h, I , ! ) :  18 solutions. 
(iii) Lower block is diag(1, I ,  I ) :  36 solutions. 

H.4. b = c # 1 
Again one can trasform the lower block to something that reflects to one of the cases before, 
except for two cases: 

(i) Lower block is diag(h, h ,  I ) :  17 solutions. 
(ii) Lower block is diag(I, I ,  I ) :  40 solutions 

I. Upper and lower blocks are unit matrices 
In this case we have the full trasformation freedom left and we use it to bring the centre 
block into the semicanonical form (recall Cz reflects to C4) 

(i) Centre block type C,: no solutions. 
(ii) Centre block type Cz: 2 solutions. 
(iii) Centre block type C,: 13 solutions. 
(iv) Centre block type C,: Let us call the diagonal elements of the centre block as (d ,  f, g). 

(1) d ,  f, g all different, 4 solutions. (2 )  g = d ,  f # d, 6 solutions. (3) d = f, f # g, 
9 solutions. (4) Centre block unit matrix, 9 solutions. 
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